Numerical Solution of the Ekpyrotic Scenario in the Moduli Space Approximation
نویسنده
چکیده
A numerical solution to the equations of motion for the ekpyrotic bulk brane scenario in the moduli space approximation is presented. The visible universe brane has positive tension, and we use a potential that goes to zero exponentially at large distance, and also goes to zero at small distance. In the case considered, no bulk brane, visible brane collision occurs in the solution. This property and the general behavior of the solution is qualitatively the same when the visible brane tension is negative, and for many different parameter choices. PACS numbers: 11.25Yb,98.80.Cq
منابع مشابه
The combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations
In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...
متن کاملIsocurvature Perturbations in the Ekpyrotic Universe
The Ekpyrotic scenario assumes that our visible Universe is a boundary brane in a five-dimensional bulk and that the hot Big Bang occurs when a nearly supersymmetric five-brane travelling along the fifth dimension collides with our visible brane. We show that the generation of isocurvature perturbations is a generic prediction of the Ekpyrotic Universe. This is due to the interactions in the ki...
متن کاملPseudo-spectral Matrix and Normalized Grunwald Approximation for Numerical Solution of Time Fractional Fokker-Planck Equation
This paper presents a new numerical method to solve time fractional Fokker-Planck equation. The space dimension is discretized to the Gauss-Lobatto points, then we apply pseudo-spectral successive integration matrix for this dimension. This approach shows that with less number of points, we can approximate the solution with more accuracy. The numerical results of the examples are displayed.
متن کاملA numerical solution of a Kawahara equation by using Multiquadric radial basis function
In this article, we apply the Multiquadric radial basis function (RBF) interpo-lation method for nding the numerical approximation of traveling wave solu-tions of the Kawahara equation. The scheme is based on the Crank-Nicolsonformulation for space derivative. The performance of the method is shown innumerical examples.
متن کاملSolving integral equations of the third kind in the reproducing kernel space
A reproducing kernel Hilbert space restricts the space of functions to smooth functions and has structure for function approximation and some aspects in learning theory. In this paper, the solution of an integral equation of the third kind is constructed analytically using a new method. The analytical solution is represented in the form of series in the reproducing kernel space. Some numerical ...
متن کامل